Directional partitioning of vertical Solarinduced fluorescence emissions for estimating ecosystem photosynthesis in a cool-temperate deciduous broadleaf forest in Japan

Kato T ¹*(tkato@cen.agr.hokudai.ac.jp), Sakai Y¹, Tsujimoto K¹, Nishida-Nasahara K², Akitsu T², Murayama S³, Noda H⁴, Muraoka H⁵

¹Hokkaido Univ, ²Univ of Tsukuba, ³Nat Institute of Adv Industrial Sci Tech, ⁴Nat Institute for Env Stud, ⁵Univ of Gifu

Chlorophyll Fluorescence (ChlF)

Chlorophyll Fluorescence (ChlF)

Drusch, M., & FLEX-Team (2008). FLEX Report for Assessment. In, ESA

Detection of ChIF and SIF

Walz Pam series

ChIF has been used for the estimation of stress under the strong flash light (Active measurement)

Recently, Passive measurement of ChIF induced by Sunlight (SIF: Solar Induced Fluorescence) from Satellite

GOSAT (JAXA)

SIF represents GPP on large scale

- Sun-Induced Fluorescence (SIF) from satellite strongly relates to the GPP on large scale (2°x2°, monthly)
- However, SIF should be more investigated its availability on finer spatio-temporal scale.
- Moreover, the contribution of lower layer in Forest ecosystems to SIF (thus, Photosynthesis) is totally unkown

Japan has a PEN!!

HSSR (Hemi Spherical Spectro-Radiometer; MS700 spectrum radiaometer (EKO) + rotater (Hayasaka Rikoh)

Major sites for SIF detection TKY(Takayama)Dec Broad For 2003-

MSE(Mase)Paddy field2005-TGF(Tsukuba)Grassland2003-FHK(Fuji)Dec Nd For2006-TKC(Takayama)Eve Nd For2007-To be added …...

Aim: To evaluate how the different vertical layers would contribute SIF emission and potentially production in forest ecosystem

Deciduous Broadleaf Forest(TKY)

Quercus crispra Betula spp.

Overstory

Site info:

36°08' N,137°25'E 1420 m a.s.l. Mean T_{air}: 12.5 °C Prec: 2275 mm/yr LAI:5-7 (max)

Spectrum data info:

Range: 300-1150nm Interval: 3.3nm FWHM: 10 nm Rotate interval: 10 mins Target: O_2 -A band SIF calc: aFLD method

Multi-directional SIF detection

Assumption: Ref/Trns/Abs ratios are horizontally same

Area-ratio Fraunhofer Line Discrimination (aFLD) method

SIF: Chlorophyll Fluorescence A_1, A_2 : Area of upper and lower parts for canopy radiance around O_2 -A bands B_1, B_2 : Area of upper and lower parts for solar irradiance around O_2 -A bands

Seasonal Trend in SIF₇₆₀ (2006)

SIF₇₆₀ vs. APAR (T_{air}>10°C, 2006)

Steeper slope of upward SIF in overstory: Stronger photoinhibition in top-canopy & sunlit side

Vertical SIF ratio in GS

Understory/Overstory ratio in SIFup

Seasonal change in multi-dir. SIF ratio may reflect phenological shift in foliage chemistry

Overstory vs. Understory

	This study (2006)				Ohtsuka et al. (2007) Ecosystems	
	SIF ₇₆₀		APAR		NPP (Biometric)	
	W/m²/nm	%	μ <mark>mol/m²/s</mark>	%	MgC/ha/yr	%
Overstory	<mark>0.78</mark> (up) 0.54 (dn)	70 	156.0	82	5.4	83
Understory	0.34 (up) (dn)	30 	35.0	18	1.1	17
Total	1.12 (up) (dn)	100	191.0	100	6.5	100

- 43% higher upward SIF from overstory showed high contribution of sunlit tissue and leaves in top canopy
- Large contribution of understory in upward SIF may indicate less photoinhibision relatively to overstory

Summary

- Multi-directional SIF₇₆₀ observation depicts the role of downward SIF emission from overstory and upward SIF emission from understory in Forest for the first time.
- Relative contribution of SIFs could reveal the physiological and phenological change in foliage chemistry and photosynthetic activity.
- Further investigation should be made by both field measurement and modeling

Thank you for your attention!!

This study is supported by

JSPS Kaken-hi Grant-in-Aid for Exploratory Research No. 15K12182 JSPS Kaken-hi Grant-in-Aid for Scientific Research (B) No. 16H02948 SUISHIN-HI of the Ministry of the Environment (MOE) of Japan, No. 2RF-1601